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Image Properties of List-Mode Likelihood
Reconstruction for a Rectangular Positron Emission
Mammograph With DOl Measurements

Jinyi Qi, Member, IEEEGregory J. KleinMember, IEEEand Ronald H. Huesma®enior Member, IEEE

Abstract—A positron emission mammography scanner is under
development at our laboratory. The tomograph has a rectangular
geometry consisting of four banks of detector modules. For each
detector, the system can measure the depth of interaction informa-
tion inside the crystal. The rectangular geometry leads to irreg-
ular radial and angular sampling and spatially variant sensitivity
that are different from conventional positron emission tomography
(PET) systems. We adapted the theoretical analysis that we had de-
veloped for conventional PET systems to the list-mode likelihood
reconstruction for this tomograph. The local impulse response and
covariance of the reconstruction can be easily computed using the
fast Fourier transform. These theoretical results are also used with
computer observer models to compute the signal-to-noise ratio for
lesion detection. The analysis reveals the spatially variant resolu-
tion and noise properties of the list-mode likelihood reconstruc-
tion. The theoretical predictions are in good agreement with Monte
Carlo results.
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Index Terms—tmage analysis, MAP estimation, positron emis-
sion tomography (PET).

|. INTRODUCTION Fig. 1. PEM geometry.

rectangular positron emission tomograph (Fig. 1), dedi-
A cated to imaging the human breast, is under developm
at our laboratory [1]. The tomograph consists of four banks
detector modules (two banks 033 modules left and right and
two banks of 3x 4 modules top and bottom). Each module co
sists of an 8« 8 array of 3x 3 x 30 mn¥ lutetium oxyorthosil-
icate (LSO) crystals. The maximum field of view (FOV) of th

‘Eﬁ The DOI information was explicitly modeled in the forward
projection for each LOR. The rectangular geometry leads to ir-
regular radial and angular sampling and spatially variant sensi-
Iﬁﬁvity that are very different from conventional positron emis-
sion tomography (PET) systems. Therefore, it is of importance
system is 96« 72 x 72 mn?. Each detector module is couple :])study the_ image prqperties of the reconstructions. We ad:_:lpted
e theoretical analysis that we had developed for conventional

to an 8x 8 photodiode array at the front and a IOhOtomuItIpIISEIE’ET systems [4], [5] to the list-mode likelihood reconstruction

tube (PMT) at the end [2]. Using the ratio between the SI9%r this tomograph. The local impulse response and covariance

nals from the photodiode and the PMT, the system measu(r)(ﬁhe reconstruction can be easily computed using fast Fourier

the depth of interaction (DOI) of the photon inside each cryst, . ;
and encodes it with three bits. Each detector is placed in coin@EnSform (FFT) techniques. These resuilts can then be used with

dence with all detectors in the other three banks, giving rise gmputer obs_erver models to compute the signal-to-noise ratio
. i . NR) for lesion detection.
172 million possible lines of response (LORS).
The data from the new tomograph are stored in list-mode
format because the total number of detections will generally be [l. THEORY
far less than the total number of LORs. We have developedha | jst-Mode Likelihood Reconstruction

list-mode likelihood reconstruction algorithm for the tomograph
Histogrammed PET data are generally modeled as a collec-

) ] ) ) tion of independent Poisson random variables. By treating the
Manuscript received February 21, 2001; revised June 8, 2001. This work

supported by the U.S. Department of Health and Human Services under G lteCtlonS in each LOR separately, we can derive the appropriate

P01 HL25840 and by the Director, Office of Science, Office of Biological antPg-likelihood function for list-mode data [3]
Environmental Research, Medical Sciences Division, U.S. Department of En-
ergy, under Contract DE-AC03-76SF00098.

. . . K N N

The authors are with the Center for Functional Imaging, Lawrence Berkeley o

National Laboratory, Berkeley, CA 94720 USA (e-mail: jgi@Ibl.gov). L(-"J) = E log E p(zk,j)xj - E €5T;5 1)
Publisher Item Identifier S 0018-9499(01)08655-5. k=1 =1 =1

0018-9499/01$10.00 © 2001 IEEE



1344 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 48, NO. 4, AUGUST 2001

where One scalar measure of resolution is the local contrast recovery

z; mean activity inside thgth voxel of the unknown coefficient (CRC), defined as the peak value of the local impulse
image; response, i.ecrc; = ().

p(¢,j) probability of detecting an event from thigh voxel Using the results derived in [5] and noting that matitxs
in theith LOR,; diagonal, we can approximat&(z) in the following compact

1k index of the LOR of thé:th detection; form:

€j = 2. p(1,5); . ()

K total number of detections; V(%) ~ Q'diag [7} Qe; (5)

N total number of image voxels. Ai(d) + Brj;

Randoms and scatters are ignored in this model.

where {\;(j), ¢ = .,N} is the Fourier trans-

The maximum likelihood (ML) estimate can be found bYorm of the local invariant approximatién of the jth

maximizing (1). A popular ML algorithm for PET reconstruccolumn of the Fisher
tion is the expectation maximization (EM) algorithm [6], [7].; = Pdiag
However, the ML solution is unstable (i.e., noisy) because tlﬂr.?e Kronecker
tomography problem is ill-conditioned. Hence, some form qf)
regularization (or prior function) is needed to reconstruct a re
sonable image. The prior function used in [3] is a Gaussian prior

whose logarithm is of the form

BU(x) = g(:c —m) R(x —m) (2)
where
i smoothing parameter;
m  estimated mean of the unknown image;
R positive definite (or semidefinite) matrix.

Combining the likelihood function (1) and the image prior

(2), the reconstruction is found as

A~

z — pU(x)]. 3)

= argina L
arg max [L(z)

For further simplification,R is chosen to be a diagonal ma-
trix, so the EM algorithm can be used to solve (3). The EM u
date equation is [3]

1 I
it =2 (i, — =2
% 2 <mj ﬁm)
2 ~n K . .
1 £ Ty 22N,
+ _<mj_ J ) + J Np(k.J) N
4 Brj; Brij = S0, plin, iy

wherer;; is the(j, 7)th element ofR.

information matrix defined as
LEJ L p(g, J).’L'J:| P, Q@ and Q' represent
orm of the FFT and its inverse, respectively.
is the detection probability matrix, with th@, j)th element
Beingp(i, ). Then thecre; is

cre; % z { ©®)

Similarly, thejth column of the covariance can be approximated
by

+/37u}

FUAY ~v €Y A5 oo )\z(l) .
COV’] (I) ~ Q dlag [m} QC] (7)
and the variance at voxglas
VRN Z[ +/3711) } ®)

Interested readers are referred to [5] for details in the deriva-

URion. The major approximations used are the first-order Taylor

series expansion and the locally shift-invariant approximation.
Thus (5)—(8) work best when the log-posterior density func-
tion is locally quadratic and (z) has compact support and is
shift-invariant within its support.

A Note on FWHM:For a linear algorithm, resolution is
characterized by measuring the full-width at half-maximum
(FWHM) of the point spread function. Generally, the noise
level is correlated to the FWHM: the larger the FWHM, the less
the noise. However, this is not strictly true for statistical recon-
struction. An example is the regularized ML reconstruction we

B. Approximation of Local Impulse Response and Covariané@e here. Considering (5), wheris very large(>> A\;(7)/7;;),

Since the estimator (3) is nonlinear, its image properties are
object dependent. Therefore, we study the image properties lo-
cally for each voxel using the local impulse response and co-

variance. The local impulse response of jtievoxel is defined
as

Exlx + de;] — Ex[x]

V(z)=1li
(z) = lim s

6—0

(4)

where
source distribution;
expectation;

jth unit vector.

reconstruction of a random data set generated by thq)‘( )

e get

V() ~ —Q diag

[3 T4
As 3 increases, the amplitude®fz) decreases, and so does the
noise level [see (7)], but the FWHM &f(z) remains the same
because the shape#fz) is determined by diag [\; (j)] Qe;
and is independent gf. In this case, even though the MAP re-
construction is pulled toward the prior mean, the significant el-

()] Qe;- 9)

is computed as follows: 1) compute the image of

-1
P’diag sz’zlp(i,j)mj] Pe; and shift the maximum value to the image
center; 2) make the image symmetry so that its Fourier transform coefficients
are real; and 3) take the Fourier transform and set any negative value to zero.
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ements of’(z) always have a finite (and relatively small) sup-
port. Hence (5)—(8) still hold for largg here. Note, this may

not be true for other priors.

C. SNR of Lesion Detection

Combining these results with computer observer models [10], i 0-71
we can derive an approximate theoretical expression for SNR3
of detecting a cancerous lesion in the reconstructed images [9]
For each reconstructiaiy a computer observer computes a test
statisticn () based on some numerical model and compares the
statistic to a decision threshold:+{z) exceeds the threshold,

# is determined to have a lesion; otherwise, it is not. The lesion
detectability can be measured by the SNR of the computer ob- 0.3

server that is defined as

SNR — (7 — 70)?
varln]

wheres;; and7j, are the ensemble means of the test statistics o
the reconstructions with and without a lesion present, respec

tively.

One simple observer model is to use the maximum contrast ¢ =
the lesion location as the test statistic. For a unit voxel lesion (thg”
lesion that is equal to the unit vector), the SNR of this contrasé 0.5
observer is just the contrast-to-noise ratio (CNR), defined as [4 4|

. : . 0.1
The contrast observer is generally considered as “too simple, 10

(10)

11)

1
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but we will show later that it achieves the maximum SNR in

lesion detection here.

Another popular observer model is the nonprewhiteni
(NPW) observer, which computes the following test statistig) piots

[10]:

nnew (#) = (E2[z + ¢;] — E&[z]) &

(12)

wherex denotes the background aagdthe unit voxel lesion.

The SNR of the NPW observer is

SNRIQ\IPVV =

(il + ] — Ex[z]) €[z + ;] — E2[z])]”

var[nnew(2)]

(@)@}
(@)= (@)]

~
~

ance of the reconstruction.

(13)

By assuming that the covariance around voxés locally

stationary,3 in (13) can be approximated by

Ai(7)

B Qdiag |:()‘i () + Bri;)?

of the lesion.

g

(14)

2

(b)

g.2. (a)Plots of CNR as afunction gffor the ten selected points of interest.

Substituting (5) and (14) into (13), we get [9]

S 0)
" (NE NG + Bt

SNRpw ~ <

of SNRpw as a function of? for the ten selected points of interest.

(15)

In Fig. 2, we plot the performance of the two computer ob-
] _ ) servers as a function of smoothing parameter with = 1.
whereX: is the covariance matrix df. Here we assume that thegzch curve corresponds to a point of interest selected in Sec-
lesion is so small that its presence does not change the covign |11-B. The p(i, 7)s for each LOR were computed as de-
scribed in [3] with 729 line integrals and including self-attenu-
ation and crystal penetration effects. Th¢;j)s are normalized
so that>> | A;(j) = N for all j. Therefore, the maximum
SNR of any linear observer (achievable with the prewhitening
observer) is one. This maximum value will be increased by the
increase in count level and lesion contrast in real situations. The
plots show that the CNR monotonically increaseg axreases
Note that the above approximation is dependent on the locatemd reaches the maximum (1.0) whéns very large; on the
other hand, the SNfR>w reaches its maximum value (around
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Fig. 3. (a) The transaxial view and its center horizontal profile, (b) coronal view and its center vertical profile, and (c) sagittal view and temieoneal
profile of the sensitivity image through the voxel of (25,19,19). Note that each view is individually scaled.

0.9) when3 = 2.0. The contrast observer outperforms the NPW
observer in detecting a unit voxel lesion. Moreover, the con-
trast observer achieves the best performance in detection that i
generally only achievable with the prewhitening observer. Note,
however, that these plots are only valid for the prior used here§
(diagonal matrixR). For other priors, the monotonic increase 5002
CNR may not exist (see [4, Fig. 3] for examples of CNR for £
pairwise difference priors). This may indicate that the contrast 0
observer is perfectly suitable for detecting lesions in a uniform
background. We plan to verify this with receiver operating char-
acteristic (ROC) studies.

0.04

X (voxel) 00

I1l. SIMULATIONS

For breast imaging with F-18-labeled deoxyglucose (FDG),
we can assume that the FOV is filled with uniform activity and
that features such as cancerous lesions account for a small frac
tion of the radioactivity. Therefore, we used a uniform flood ~ 9-041
source as background. For simulations of acquired data, a linea3
attenuation coefficient of 0.01 mm was used for self-atten-
uation, and a linear attenuation coefficient of 0.1 minwas
used for crystal penetration. The total number of detections from
the background was about 2.3 million, calculated by assuming
a 1-min scan of a subject weighting 70 kg, and an injection of
1 mCi of FDG that was uniformly distributed inside the body.
List-mode data were generated by tracing the two back-to-back
photons generated by each positron annihilation. Photons tha X (voxel)
interact in any way in the field of view are assumed undetected, (b)
and photons that interact in the detectors are assumed to dgi§0s. Surface plots of the measured local impulse response functions. (a)
once in a single well-defined depth decoded portion of a scintiive points of interest in the axial center plane and (b) five points of interest in
lator crystal. The images were reconstructed withx85 x 36  the third plane from the axial boundary.
2 mm cube voxels using the algorithm described in [3]. The
p(¢, 7)s for each event were computed using 729 line integraishen the absolute value of the relative change of each voxel be-
The algorithm was run until convergence, which was definadme less than 0.0001.

00

Y (voxel)
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A. Spatially Variant Sensitivity sponses were measured by computing the difference between

We study the spatially variant sensitivity of the rectanguldP€ reconstruction of the background plus a point source and

tomograph by computing the diagonal elements of the FisHOE reconstructi_on of the sole background. _In this study, we
information matrix for a uniform background only used one list-mode data set for the uniform background

(2 million events) and did not average over an ensemble of
reconstructions. However, the point sources were chosen to

i )2
fii = Z ]\p(t’il) (16) have relatively high count (10:1 ratio) so that the noise in the
i S plis k) measured local impulse response function should be small.
k=1 Fig. 4 shows the surface plots of the measured local impulse

response functions. Each plot was a summation of five individ-
where} . is the sum over all possible LORs angl = 1. Note ually computed local impulse response functions in the same
fij = zf‘;l A:(7)/N. It partly controls the resolution and noiseaxial plane. Despite the spatially variant sensitivity, the local
tradeoff, as shown in (5)—(8), and is different from the photampulse responses shown in Fig. 4 have nearly constant CRCs.
detection sensitivity; in (1). This shows the effectiveness of the weightingrgf = f;;.

The result is shown in Fig. 3. Clearly, the four corners in thié »;; = 1, the effective smoothing parameter for each point
transaxial view have the highest sensitivity because the detectomuild be 3/ f,;, as shown in (18). Hence the CRC would be
are closer to each other and hence the projection lines that intgratially variant as a function of;;: the center plane would
sect them pass through very few other voxels. The next levelluive higher CRCs than the axial boundary plane, and within
sensitivity is the set of voxels near the detector face becauseeath plane, the corner voxel would have higher CRC than other
a similar reason. The top and the bottom axial planes have theations.
least sensitivity. Secondly, we compute the local impulse response functions

The highly variant sensitivity determines the spatially variamtsing (5). Fig. 5 shows the comparison of the contour plots
resolution and noise properties in reconstructions. If we can @&-the measured local impulse response functions and the

sume that thg \;(5), ¢« = 1, ..., N} for all the voxels have the theoretical approximations using (5) for the five points in the
same shape and the only difference between them is their maaial center plane. It shows that the theoretical approximations
value, i.e., closely match the measurements. The different shape of the
_ local impulse response for different points shows that the

Aig) = fiiNi (17) assumption in (17) does not strictly hold. In addition, if the

background is not uniform, more mismatch could be expected
for locations near the structural boundaries because their local
impulse response functions would have more irregular shapes.

where),; is the normalized frequency response V\Eﬂle i =
N, then (6) and (8) can be changed to

N < :
1 A C. Variance
N A+ 'f’_ﬂ_ﬂ We computed the voxel-wise variance image using 200 in-
v dependent Monte Carlo reconstructions and compared with the
N theoretical prediction from (8). The smoothing paramgtesas

— (19) 50. Fig. 6 shows the transaxial, coronal, and sagittal views of
Jii i=1 (Xi + h) the relative standard deviation images through the center voxel
in the FOV. Fig. 7 shows the comparison of two profiles through
the relative standard deviation images. Strictly speaking, com-
puting the variance image using (8) requires the computation
of X\;(y) for all the voxels. This would require a large amount
of computing time. Here we used the(;j) of the center voxel
in each axial plane for all the voxels inside that plane. This ap-
the sensitivities/;;. This property is desirable because th roximatiqn caused unde'restimation of.the.vari.anc'e around the
9 orner regions, as shown in the transaxial view in Fig. 6. In gen-

spa}nal vgnauoq of CRC IS removed, and the variation Q ral, the Monte Carlo results are in good agreement with the
variance is easier to predict as well. Therefore, we use this

o . . ) Meoretical predictions.
weighting schemeér;; = f;;) in the following reconstructions. ~ < 1, v Monte Carlo and theoretical results show, the vari-
Although the assumption (17) does not strictly hold in rea| ’

situations. it is a reasonable aporoximation. as shown in t nces are not uniform across the whole FOV. Instead, they are
fcl>lro I'n 's!ml lation results pproximation, whn | garly inversely proportional to thg;;s, as shown in (19). If
wing: simuiati uits. rj; = lisused, then the variance would be less spatially variant.

It shows that the CRC at voxel is controlled bygr;;/ f;;,
and the variance is controlled by ba#,;/ f;; and f;; itself.
Both of them are spatially variant j$r;; is constant for all
js. If, however, we choose;; = f;;, then CRC is constant
for all voxels, and the variance is inversely proportional t

B. Local Impulse Response

We selected ten points of interest in the FOV—five in the IV. CoNncLUSION

center axial plane and five in an off-center axial plane—for We have adapted the theoretical analysis we developed for
studying local impulse response functions. We chose thenventional systems to the new rectangular PEM that has ir-
smoothing parameteff = 50. First, the local impulse re- regular radial and angular sampling. The results allow fast com-
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&) Fig. 6. Comparison of the relative standard deviation images from Monte
Carlo reconstructions (top row) and theoretical predication (bottom row).
From left to right, the images are transaxial, coronal, and sagittal views of the
standard deviation images through the center voxel.
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@ @] =) Fig. 7. Comparison of the relative standard deviation profiles: (a) horizontal
profiles through the center of the transaxial view in Fig. 6; (b) vertical profiles
through the center of the sagittal view in Fig. 6.
(e

Fig. 5. The transaxial (left column), coronal (center column), and sagittal . fthe | li | f . d .
(right column) contour plots of the measured local impulse response (top r(ﬂ})ltat'on of the local Impulse response function and covariance.

and the theoretical approximations (bottom row) for the five points of intere€@omputer simulation results reveal good agreement between the
in the axial center plane: (a) point (2, 2, 18); (b) point (12, 8, 18); () point (4heoretical approximations and the Monte Carlo results. The
18, 18); (d) point (36, 18, 18); (e) point (46, 18, 18). The innermost, mlddg tical Its h Iso b dt te SNR for |
and outermost contours correspond to 0.5, 0.1, 0.01 of the maximum of e @ﬁore ICal results have also been used 1o compute or le-
response, respectively. sion detection. Future work will include modeling randoms and
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scatters in reconstruction and validating the results with ROC[4] J. Qi and R. M. Leahy, “A theoretical study of the contrast recovery and
studies and real data from the scanner.

(5]

variance of MAP reconstructions from PET datéEEE Trans. Med.
Imaging vol. 18, pp. 293-305, 1999.

——, “Resolution and noise properties of MAP reconstruction for fully
3D PET,”IEEE Trans. Med. Imagingrol. 19, pp. 493-506, 2000.

[6] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from in-
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